

JAWAHARLAL NEHRU UNIVERSITY
University of Excellence
(Established by an act of Parliament in 1966)

**Curriculum and Syllabi
Of
M.Tech. Nano Electronics
(w.e.f. 2025)**

Special Centre for Nano Science

Approved by

Approval Status

Approval Date

Special Committee

12-03-2025

Academic Council

03.04.2025

M. Tech. in Nano Electronics (NE) 2025-2026 onwards

Course Structure & Syllabus

A student shall have to earn **88 credits** at the end of two years in order to be eligible for the award of M. Tech. Degree.

Semester I: Total Credits = 24

Sr. No.	Course Type	Course Code	Course Name	Credits
1	Core - 1	NS 684	VLSI Design	4
2	Core - 2	NS 685	Process Technology for VLSI	4
3	Core - 3	NS657N	Thin Film Technology	4
4	Core - 4	NS656N	Nano electronics	4
5	Core - 5	NS 689	Quantum Mechanics & Nanostructures	4
6	Core - 6	NS655N	Lab – 1	4

Semester II: Total Credits = 24

Sr. No.	Course Type	Course Code	Course Name	Credits
1	Elective	NS659N	Elective- I	4
2	Elective	NS658N	Elective - II	4
3	Elective	NS674N	Elective – III	4
4	Elective	NS677N	Elective - IV	4
5	Elective	NS680N	Elective - V	4
6	Core - 7	NS671N	Lab – 2	4

Semester III: Total Credits = 20

Sr. No.	Course Type	Course Code	Course Name	Credits
1	Core - 8	NS690	Research Methodology	4
2	Project	NS691	Minor Project	16

Semester IV: Total Credits = 20

Sr. No.	Course Type	Course Code	Course Name	Credits
1	Project	M.Tech. Dissertation	Dissertation	20

List of Electives Courses for M.Tech. Semester II

Program Electives (Select any five of the following)

Course No.	Course Code	Course Name
NE7	NS659N	Nano Biosensors and Microfluidics
NE8	NS658N	Advance Semiconductor Devices
NE9	NS674N	VLSI Design & Testing
NE10	NS 687	CMOS RF Integrated Circuits
NE11	NS676N	MEMS/NEMS
NE12	NS677N	Analog IC Design
NE13	NS680N	RFIC/MMIC
NE14	NS679N	CAD for VLSI Design
NE15	NS662N	Nanolithography & Nano scale devices
NE16	NS631	Nanotechnology in Manufacturing
NE17	NS 688	Frontiers in Nano Science & Technology

Note:

Minor project: Minor project can be taken up with the faculties of the Centre.

Major Project: For Major Project & Dissertation the students will be encouraged to join any industry or research laboratory.

*Elective courses will be offered by the SCNS as per the availability of the teachers.

Laboratory: M.Tech. Nano electronics

Core – 6: Lab – 1

List of experiments

1	X-Ray Diffraction
2	Nanowires and nanotubes deposition by Electro-deposition
3	MOS characteristics using H-Spice model in ADS tool
4	Fabrication of thin films by sputtering
5	Fabrication of thin films by sol-gel method
6	Thin film deposition by sputtering / thermal evaporation
7	Design and Characterization of TFET using Silvaco
8	Design an CMOS Inverter and find output Characteristics
9	Design and Implementation of CMOS Transmission Gates
10	Design of CMOS Logic Circuits
11	Measuring the current-voltage (I-V) characteristics of Nano-devices like single-molecule junctions
12	Analyzing the electronic properties of Nano-materials using techniques like Raman spectroscopy

Note: Minimum eight (08) experiments have to be performed.

Core – 7: Lab – 2

List of experiments

1	Fabrication of biosensing electrodes
2	Transmission Electron Microscopy
3	Microwave measurements by Spectrum Analyzer & Vector Network Analyzer
4	Lithography for fabrication of microwave & mm-wave Filter & Phase shifter
5	Design and Simulate basic Common Source, Common Gate and Common Drain Amplifiers. Analyze the input impedance, output impedance, gain and bandwidth
6	Design an Adder (Min 8 Bit) using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
7	Design a Multiplier (4 Bit Min) using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
8	Design a Common source (CS) and Common Gate (CG) amplifier using CMOS 90nm H-Spice model at 10MHz with supply of 1.8V. Find out the DC and AC Characteristics
9	Design a CS Low Noise Amplifier with current mirror technique using CMOS 90nm H-Spice model for blue-tooth applications and find out S-parameters, noise figure and 1-dB compression point.
10	Take a CGH40010F MACOM GaN HEMT device with operating voltage of 28V and gate voltage of -2.7V at S-band applications and find out the DC Characteristics and S-parameters and verified data with commercial datasheets
11	Design Finite State Machine (Moore/Mealy) using HDL. Simulate it using Xilinx/Altera Software and implement by Xilinx/Altera FPGA
12	Scanning Electron Microscopy (SEM)

Note: Minimum eight (08) experiments have to be performed.

Eligibility for Admission:

M.Tech. in Nano Electronics: B.E./ B.Tech. in Electronics & Communications/ Electrical Engineering or Master's degree in Electronics with 55% marks of a recognized University/ Institution or equivalent grade 'B' in UGC 7-point scale or an equivalent grade in a point scale where grading system is followed.

M.Tech. Degree Credit Requirements: No student admitted to the program shall be eligible for the award of M.Tech. degree unless he/she secures 88 credits in all. Students securing minimum required CGPA as per ordinance will be eligible for M. Tech. degree.

JAWAHARLAL NEHRU UNIVERSITY
University of Excellence
(Established by an act of Parliament in 1966)

**Curriculum and Syllabi
Of
M.Tech. Nano Science
(w.e.f. 2025)**

Special Centre for Nano Science

Approved by	Special Committee	Academic Council
Approval Status	/	
Approval Date	12-03-2025	03.04.2025

M. Tech. in Nano Science (NS) 2025-2026 onwards

Course Structure & Syllabus

A student shall have to earn **88 credits** at the end of two years in order to be eligible for the award of M. Tech. Degree.

Semester I: Total Credits = 24

Sr. No.	Course Type	Course Code	Course Name	Credits
1	Core - 1	NS 689	Quantum Mechanics and Nanostructures	4
2	Core - 2	NS652N	Nano Chemistry	4
3	Core - 3	NS653N	Nano Bioscience	4
4	Core - 4	NS657N	Thin Film Technology	4
5	Core - 5	NS663N	Design & Synthesis of Nanostructures	4
6	Core - 6	NS655N	Lab – 1	4

Semester II: Total Credits = 24

Sr. No.	Course Type	Course Code	Course Name	Credits
1	Elective	NS 631	Elective- I	4
2	Elective	NS 659N	Elective - II	4
3	Elective	NS 660N	Elective – III	4
4	Elective	NS 661N	Elective - IV	4
5	Elective	NS662N	Elective - V	4
6	Core - 7	NS671N	Lab – 2	4

Semester III: Total Credits = 20

Sr. No.	Course Type	Course Code	Course Name	Credits
1	Core - 8	NS 690	Research Methodology	4
2	Project	NS 691	Minor Project	16

Semester IV: Total Credits = 20

Sr. No.	Course Type	Course Code	Course Name	Credits
1	Project	M.Tech. Dissertation	Dissertation	20

List of Electives Courses for M.Tech. Semester II

Program Electives:

Course No.	Course Code	Course Name
NS7	NS631	Nanotechnology in Manufacturing
NS8	NS659N	Nano Biosensors and Microfluidics
NS9	NS660N	Nanobiotechnology and Nanomedicine
NS10	NS661N	Nanoscale Characterization
NS11	NS662N	Nanolithography & Nanoscale devices
NS12	NS664N	Chemical Engineering of Nanostructures
NS13	NS673N	Renewable Energy Technology
NS14	NS 688	Frontiers in Nanoscience

Note:

Minor Project (Semester III) and Major Project (Semester IV): Projects will be taken up with the faculties of the SCNS.

Elective courses will be offered by the SCNS as per the availability of the teachers.

Laboratory: M.Tech. Nanoscience

Core – 6 : Lab – 1

List of experiments

1	Handling of microbial culture/cell lines
2	Microbial growth curve
3	Nano-bio interactions I: Cyto-toxicity (effect of nanomaterials on growth curve of microbial cells)
4	Nano-bio interactions II: Cyto-toxicity (zone inhibition assay)
5	X-Ray Diffraction
6	Nanowires and nanotubes deposition by Electrodeposition
7	UV-Visible spectroscopy
8	Nanostructure synthesis by Reduction Method
9	Nanostructure synthesis by Solid State Method/Ceramic Method
10	Nanostructure synthesis by Hydrothermal method
11	Fabrication of thin films by sputtering
12	Fabrication of thin films by sol-gel method

Note: Minimum eight (08) experiments have to be performed.

Core – 7 : Lab – 2

List of experiments

1	Fabrication of biosensing electrodes
2	Transmission Electron Microscopy
3	Atomic Force Microscopy
4	Dielectric measurement by Impedance Analyzer
5	Polarization versus Electric field; hysteresis loop measurement
6	Nanomaterial-biomolecule interactions
7	Bio-conjugates
8	Handling of cell lines; Cell viability (Cyto-toxicity, MTT assay)
9	Dynamic light scattering
10	Light Microscopy
11	Raman spectroscopy
12	Scanning Electron Microscopy

Note: Minimum eight (08) experiments have to be performed.

Eligibility for Admission:

M.Tech. in Nano Science: Master's degree in Science or B.E./ B.Tech. in any branch of engineering and technology with 55% marks of a recognized University/ Institution or equivalent grade 'B' in UGC 7-point scale or an equivalent grade in a point scale where grading system is followed.

M.Tech. Degree Credit Requirements: No student admitted to the program shall be eligible for the award of M.Tech. degree unless he/she secures 88 credits in all. Students securing minimum required CGPA as per ordinance will be eligible for M. Tech. degree.

Program Core

Semester-I

Sr. No.	Course Type	Course Code	Course Name	Credits
1	Core - 1	NS 689	Quantum Mechanics and Nanostructures	4
2	Core - 2	NS652N	Nano Chemistry	4
3	Core - 3	NS653N	Nano Bioscience	4
4	Core - 4	NS657N	Thin Film Technology	4
5	Core - 5	NS663N	Design & Synthesis of Nanostructures	4
6	Core - 6	NS655N	Lab – 1	4